The empty primordial asteroid belt
نویسندگان
چکیده
The asteroid belt contains less than a thousandth of Earth's mass and is radially segregated, with S-types dominating the inner belt and C-types the outer belt. It is generally assumed that the belt formed with far more mass and was later strongly depleted. We show that the present-day asteroid belt is consistent with having formed empty, without any planetesimals between Mars and Jupiter's present-day orbits. This is consistent with models in which drifting dust is concentrated into an isolated annulus of terrestrial planetesimals. Gravitational scattering during terrestrial planet formation causes radial spreading, transporting planetesimals from inside 1 to 1.5 astronomical units out to the belt. Several times the total current mass in S-types is implanted, with a preference for the inner main belt. C-types are implanted from the outside, as the giant planets' gas accretion destabilizes nearby planetesimals and injects a fraction into the asteroid belt, preferentially in the outer main belt. These implantation mechanisms are simple by-products of terrestrial and giant planet formation. The asteroid belt may thus represent a repository for planetary leftovers that accreted across the solar system but not in the belt itself.
منابع مشابه
The primordial excitation and clearing of the asteroid belt—Revisited
We have performed new simulations of two different scenarios for the excitation and depletion of the primordial asteroid belt, assuming Jupiter and Saturn on initially circular orbits as predicted by the Nice Model of the evolution of the outer Solar System [Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005. Nature 435, 466–469; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F.,...
متن کاملPrimordial black holes and asteroid danger
Probability for a primordial black hole to invade the Kuiper belt was calculated. We showed that primordial black holes of certain masses can significantly change asteroids’ orbits. These events may result in disasters, local for our solar system and global for the Earth (like the Tunguska meteorite). We also estimated how often such events occur.
متن کاملThe Compositional Structure of the Asteroid Belt
The past decade has brought major improvements in large-scale asteroid discovery and characterization with over half a million known asteroids and over 100,000 with some measurement of physical characterization. This explosion of data has allowed us to create a new global picture of the Main Asteroid Belt. Put in context with meteorite measurements and dynamical models, a new and more complete ...
متن کاملLarge Scattered Planetesimals and the Excitation of the Small Body Belts
We study the dynamical excitation that large planetesimals, scattered either by Neptune or Jupiter, could have provided to the primordial Edgeworth–Kuiper belt and the asteroid belt. Using both a refined Monte Carlo approach and direct numerical integration, we show that the Monte Carlo method is useful only to give qualitative insight into the resulting excitation, but cannot be trusted from a...
متن کاملThe Primordial Excitation and Clearing of the Asteroid Belt
In this paper, we use N -body integrations to study the effect that planetary embryos spread between ∼0.5 and 4 AU would have on primordial asteroids. The most promising model for the formation of the terrestrial planets assumes the presence of such embryos at the time of formation of Jupiter. At the end of their runaway growth phase, the embryos are on quasi-circular orbits, with masses compar...
متن کامل